
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 12, 59-80 (1991) 

THERMOCAPILLARY FLOW AND NATURAL 
CONVECTION IN A MELT COLUMN WITH AN 

UNKNOWN MELT/SOLID INTERFACE 

C. W. LAN AND SINDO KOU 
Department of Materials Science and Engineering, and Center of Excellence in Solidification Processing Technologies of 

Engineering Materials, Uniuersity of Wisconsin, Madison, WI 53706, U.S.A. 

SUMMARY 
A vertical melt column set up between an upper heating rod and a lower sample rod, i.e. the so-called half- 
zone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal 
growth. In order to  help understand the convection observed in the melt column, a computer model has been 
developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. 
The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear co- 
ordinates in order to accurately treat the unknown melt/solid interface as well as all other physical 
boundaries in the system. The effects of key dimensionless variables on the following items are discussed 
(1) convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the 
height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers. 

KEY WORDS Thermocapillary flow Natural convection Melt/solid interface Grashof number 
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INTRODUCTION 

In a recent study by Lan et ul.,' thermocapillary flow in floating-zone crystal growth under 
microgravity was studied in a vertical melt column of NaNO,. The top of a vertical NaNO, 
sample rod was brought into contact with the bottom of a vertical heating rod of the same 
diameter and a melt column was produced at the top of the sample rod. The study focused on the 
reduction in thermocapillary flow in the melt column by using a ring whose inner surface was in 
contact with the melt surface from the top to a short distance above the melt/solid interface. 

The experimental arrangement described above, i.e. to prepare a vertical melt column between 
a heating rod and a solid sample rod, is called a half-zone system. It was first used in a study by 
Schwabe et uL2 There is another version of the half-zone system in which a column of melt (or 
organic fluid) is maintained between the ends of two vertical heating rods of the same dia- 

Under this circumstance no melting of solid sample rods is involved and hence no 
melt/solid interfaces are present. The main advantage of the half-zone system is that a transparent 
melt material (or fluid) can be used so that convection in the melt (or fluid) can be visualized. This 
is because, unlike in actual floating-zone crystal growth, the heater in the half-zone system is 
above rather than around the melt (or fluid). Of the two versions of the half-zone system 
mentioned above, we prefer the first one since a free boundary, i.e. the interface between the melt 
and the sample rod, exists in the system, thus simulating the melt/crystal interface in floating-zone 
crystal growth. 
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Numerous computational studies have been carried out to investigate thermocapillary flow in 
a melt (or fluid) column between two heating or sample Heat transfer, fluid flow and in 
some cases mass transfer and the effect of rotation are considered, the Prandtl numbers being 
mostly small, e.g. 0.1. In these studies both of the two melt/rod interfaces are assumed flat and 
their positions are fixed. In other words, they are mathematically identical (in the case of two 
heating rods) or equivalent (in the case of two sample rods) to the second version of the half-zone 
system mentioned above. However, there have been no computational studies on the first version 
of the half-zone system mentioned above. The purpose of the present study is to develop a 
computer model for the first version of the half-zone system, which we wish would be useful for 
interpreting the melt convection observed in this version of the system. The problem in the 
present study is computationally di!Terent from those involving the Bridgman process mainly in 
that Marangoni convection is not present in the Bridgman process. 

In the study of Lan et al.' the effect of the contact between the melt and the inner surface of a 
ring on thermocapillary flow in the melt was demonstrated experimentally and with the help of 
some computational results. No details of the computation, however, were given. In the present 
study both thermocapillary flow and natural convection in a half-zone system are considered. The 
co-ordinate transformation, the method of solution and the treatment of the unknown melt/solid 
interface are described. The effects of key dimensionless variables such as the Grashof, Marangoni 
and Prandtl numbers are discussed. 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The half-zone system modelled is illustrated schematically in Figure 1. The convection in the melt 
is assumed axisymmetric, laminar and at steady state. In the absence of flow instability caused by 
very strong thermocapillary flow in the melt, this assumption is considered valid. The free surface 
of the melt column is assumed cylindrical. Since the melt columns in most half-zone experiments 
are rather short, melt surface distortions are small. For example, Figure 2 shows a melt column 
between a 6 mm diameter NaNO, sample rod and a graphite heating rod of the same diameter. 
The static Bond number, which can be defined as p g R 2 / y  and which is often used as a measure for 
the extent of surface distortion due to gravity, has a relatively small value of 1.4 in this case. Melt 
surface distortions will be considered elsewhere. 

Figure 1. The half-zone system with an unknown melt/solid interface 
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Figure 2. Melt column between an NaNO, sample rod and a graphite heating rod, both rods being 6 mm in diameter 

The half-zone system being considered is illustrated schematically in Figure 1. In order to 
present the calculated results in dimensionless form, the following dimensionless variables are 
defined: 

R e =  U R J v ,  P r  = V I M ,  M a  = ( a y / a  T )  A T R  J p L  v2 ,  

Gr  = g/3ATR3/v2, Bi= hRJk, O=(T- T,)JAT, 

k* =kJkL,  P* = PJPLI 

Z* = z / R ,  r* = rJR, L* = L J R ,  

* * = * / P L  U R 2 ,  a* = wRJU, 

u* = u/u, v* = VJU. 

The above definition of the Marangoni number M a  has been used, for instance, by Derby28 and 
Brown.29 The characteristic velocity U and the characteristic temperature difference A T  are 
defined as 

U = (  , A T =  T h  - T,. 

The above definition of the characteristic velocity U was first used by Ostrach3' and more 
recently by Kozhoukharova et d3' The streamfunction $ and vorticity w are defined in terms of 
the radial velocity u and the axial velocity v as follows: 
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Using the above dimensionless variables, the governing equations3’ can be expressed as 
follows: 

equation of motion 

stream equation 

a (1 Y) +a (1 ”> + o* = 0; 
ar* p*r* ar* az* p*r* dz* (4) 

equation of energy 

Equation (3) is based on the incompressible Navier-Stokes equations employing the Boussinesq 
assumption. 

The thermal boundary conditions are as follows. 

1. Along the centreline of the system, 

ae 
ar* 
-=0 due to symmetry. 

2. On the surfaces of the sample rod and the free surface of the melt, 

- (n -V*e)=Bi (e -B , ) ,  

where n is the outward normal unit vector. A radiation term can be included on the RHS of 
the above equation. For a low-temperature material such as NaNO, (melting point 
T,  = 306.8”C), however, this is not necessary. 

3. At the melt/heater interface, 

e= 1. 

4. At the melt/solid interface, 

8=0, (k* n - V*O), - (n  - V* O), +- psAH n * v = 0. 
k,AT 

The above energy balance equation is the Stefan condition. Since the sample rod does not 
move, velocity V = 0. 

The fluid fow boundary conditions are as follows. 

1. Along the melt centreline, 

**=O, o* =o. 
2. On the melt free surface, 
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3. A t  the melt/heater interface, 

4. At the melt/solid interface, 

Along the melt centreline, IC/ * is set equal to zero as a reference. Along other boundaries, IC/ * = 0 
because the sample rod is stationary. w* = O  in boundary condition 1 is a result of the fact that the 
velocity field is symmetrical with respect to the centreline (i.e. av/ar=O) and that no material flows 
across the centreline (i.e. u = 0). In boundary condition 2, u = 0 at the melt surface and the shear 
stress induced by the surface tension gradient at the melt surface is described by 

The vorticity boundary condition in 3 is the result of the no-slip condition u=O. The no-slip 
condition of u= v=O is also used in boundary condition 4. 

CO-ORDINATE TRANSFORMATION 

Owing to  the fact that the melt/solid interface is not flat but is curved, its vorticity boundary 
condition in terms of the cylindrical co-ordinate system (r*,  z* ) ,  i.e. fluid flow boundary condition 
4, cannot be properly implemented. In view of this, we have transformed the above governing 
equations and boundary conditions into those in terms of general (non-orthogonal) curvilinear 

Figure 3 .  Part of a 21 x 51 grid mesh used for computation of heat transfer and fluid flow in the half-zone system: 
(a) physical domain; (b) computational domain. The melt/solid interface (indicated by arrowheads) coincides with a grid 

line in both cases 
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co-ordinates (q ,  5), which fits all the physical boundaries, including the melt/solid interface, as 
shown in Figure 3. In this way, all the boundary conditions can be treated accurately. The 
generation of the grid shown in Figure 3(a) will be discussed later. 

equations (3)-(5) can be transformed into the 
following general form: 

Following the procedure of Thompson et 

Coefficients a, b, c and d in the above equation are given in Table I for 4=$*, w* and 0 
respectively. Other coefficients in the same equation are defined as follows: 

do, = Jd, 

ar* az* 
“ I = ( % )  +(%) 
g z 2 = ( g ) ’ + (  66) az* 2 3 

Y 1 2 = (  F)( g)+( F)(%)? 
J =( g) (%)- (g ) (g), 

The above expressions for P and Q are not general but are valid only when aria( is zero, which is 
the case in the present study. 

Table I. Coefficients a, b, c and d in equation (6) 

4 a b C d 

**  0 Ilpr* 1 w* 

0 1 r*lPrRe 1 0 
(I)* Llr* Ilr* Re  r* - (GrlRe2)  aOlar* 
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The transformed thermal boundary conditions (with &/a( = 0) are as follows. 

1. Along the centreline of the system, 

2. On the surfaces of the sample rod and the free surface of the melt, 

- (n - V*B) = Bi(B - #a). 

3. At the melt/heater interface, 

Q= 1. 

4. At the melt/solid interface, 

e = 0, ( k * n  - V* Q)s -(n - V*6qL =O. 

The transformed fluid flow boundary conditions (with &/a< =0) are as follows. 

1. Along the melt centreline, 

$ * = O ,  o* =O. 

2. On the melt free surface, 

3. At the melt/heater interface, 

4. At the melt/solid interface, 

METHOD O F  SOLUTION 

Regarding the grids for computation, one can generate the grid in Figure 3(a) by numerically 
solving two Laplace equations, as demonstrated by Thompson et However, since the shape 
of the physical system in the present study is relatively simple, we have decided to use a simple but 
efficient approach as described below. Another reason for using the grid-spacing algorithm is that 
it allows second-order accuracy in the finite difference computation. 

A grid system in the computational domain is first constructed as shown in Figure 3(b). q 
increases from zero at the centreline to qmax at the melt surface, while 5 increases from zero at the 
bottom of the sample rod to 5 ,  at the melt/solid interface and then to tb at the melt/heater 
interface. This grid spacing Aq = A (  =constant in order to insure second-order accuracy in the 
finite difference approximations. Simple analytical equations can be used to relate r * to q and z* 
to 5 respectively, as shown in the following example: 

r*=0.5(1 + tanh[c(~/qm,,-0~5)]/tanh(0~5c)}, (7) 
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solid 

melt 

where h: and L* are the dimensionless heights of the melt/solid and the melt/heater interfaces, the 
former being a function of q while the latter is a constant. NPY 1 is the number of nodal points in 
the t-direction in the solid. The values of 3.0 for the constants C and c and 1.25 for the constant k ,  
have been found satisfactory for the present problem. 

It should be pointed out that the r*-v and z*-( relationships in equations (7)-(9f(incIuding the 
values of the constants) are so set up as to help produce finer grid spacing near the melt/solid 
interface and all other boundaries of the system, as shown in Figure 3(a). It should also be pointed 
out that the first and second derivatives of r* (with respect to q )  and z* (with respect to 0, which 
appear many times in the coefficients in equation (6), can be derived from equations (7)-(9). The 
derivatives so obtained are more accurate since no finite difference approximations are needed. 

Before proceeding to describe the numerical method used in the present study, it should be 
mentioned that Brown and his co-workers have studied free boundary problems in crystal 
growth, especially those associated with the Bridgman and Czochralski processes (see e.g. 
References 29, 34 and 35). The numerical methods they have developed, which are based on the 
finite element method, can also be applied to solve the present problem. However, since we have 
always been working with the finite difference method, we have chosen to use this method in the 
present study. 

The numerical method of Gosman et d3' was employed. In brief, equation (6) was integrated 
over the control volume shown in Figure 4 and then discretized to obtain the following finite 

Figure 4. Illustration of a portion of the finite difference grid showing the control volume 
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difference equation: 

where 

and 

In the above equations, 

The absolute values in A,, A,, A s  and AN are due to the use of the upwind scheme. The above 
equations are very similar to those given by Gosman et ~ 1 . ~ ~  

The relaxation factor, called the E-factor, introduced by Raithby and S ~ h n e i d e r ~ ~  was 
employed. With this, equation (10) can be rewritten as follows: 

RHS + ( J/E)d",' 
"= 1+J/E ' 

where RHS is the right-hand side of equation (10). The Jacobian J appears in equation (11) 
because of co-ordinate transformation. Various values of E can be used, but 0.5 was found to 
work well in our calculations. 

The melt/solid interface was located and updated using the isotherm migration method, which 
has been described by Crank.37 Essentially, the Stefan condition described previously was used in 
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each iteration of the temperature field calculation. After the temperature field was calculated, a 
new interface was then located by the following linear interpolation (when Bi* j < O  and r3i,j+ >O): 

(12) 

Based on the new interface, a new grid mesh was generated using equations (7)-(9), and the 
geometric coefficients g l l ,  g I 2 ,  gZ2, J ,  P and Q corresponding to this new mesh were calculated. 
All these were then used to calculate the new velocity field in the melt. This iteration scheme is 
illustrated in Figure 5. Besides the outer iteration loop, there were also inner iteration loops, i.e. 
one for temperature, one for vorticity and one for the streamfunction. The number of iterations 
was about five in each of these inner loops. The outer-loop iteration was continued until the 
following convergence criteria were satisfied: 

h,(Vi)=z: j + ( z z j +  1 - z ; j ) ( O - Q i ,  j ) / ’ ( o i , j +  1 -oi,j). 

Initialization E 
Calculate temperature. I I Eqn. (1;) 1 
Locate interface, 

Generate Grid. 

Calculate vorticity. 

function. Eqn. (11) 

Q convcrgenc 

I Yes 

stop 

Figure 5. Flowchart showing the iteration scheme 
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In the first two criteria 1 denotes summation over all grid points, while in the last criterion C 
denotes summation over the grid points along the melt/solid interface. A Harries 800 computer 
was used and the CPU time ranged from 20 to 60 min depending on the extent of convection 
involved. This range of CPU time corresponds to approximately 30-200 times of updating the 
melt/solid interface. 

RESULTS AND DISCUSSION 

In order to check the validity of the co-ordinate transformation, grid generation and heat flow 
calculation, the temperature distributions in the melt and the sample rod and the shape of the 
melt/solid interface were calculated for the simple case where heat transfer is by conduction only 
and where the thermal properties of the solid and the melt are identical. The analytical solution 
for the dimensionless temperature in this case is given by3* 

-to, .  1 2Bi Jo( i f l r*)  ifl cosh(i,z*)+ Bisinh(A,z*) ( f l = l  ( B i 2 + A ~ ) J O ( A f l )  A,cosh(i,L*)+Bisinh(%,L*) 
t) = ( l - Q a )  1 

In the above equation, in is the nth root of the equation 

) " J b ( i )  + Bi Jo(i) = 0, 

where J ,  is the Bessel function of the first kind and zero order, and Jb is its first derivative. 
To insure accuracy, a total of 100 roots (i.e. N = 100) are used to calculate the dimensionless 
temperature 0. The agreement between the numerical solution and the analytical solution given 
above is excellent, an example being shown in Figure 6 for a 6 mm diameter, 40 mm long rod of 
NaNO,. The Biot number is 4.83 x and is based on a heat transfer coefficient of 
4 6 0 0 e r g ~ r n - ~ s - '  "C-' a t an average air temperature of 600 K.39 It should be pointed out that 
the heat transfer coefficient at the bottom of the solid sample rod is taken to be the same as that 
on its surface. This is equivalent to the case where the solid sample rod is held in position by 

heater 
e =  1. T L*= 13.33 

1 Analytical (reference 34) 

Numerical [this study) 

a = -12.147 

0 rl 1. 

Figure 6. Comparison between analytical and numerical solutions of dimensionless temperature 0 
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horizontal set screws with a sharp point. A different heat transfer coefficient may be used if the 
bottom is in direct contact with a horizontal surface. 

In order to test the effect of the grid mesh, we have used two significantly different grid meshes 
for computation. The first one, which is shown in part in Figure 3, is 21 x 51. The second one, 
which is shown in part in Figure 7, is 41 x 71. The calculated results (for Gr=O, M a =  - 167 and 
Pr = 1.86) based on the first and second grid meshes are shown in Figure 8(a) and 8(b) respectively. 
As shown, the streamlines near the centre of the vortex are smoother in Figure 8(b) owing to there 
being significantly more grid points in the melt. Speaking overall, however, the results shown in 
the two cases are very close, the difference being less than 3%. In fact, the shape and position of 
the melt/solid interface and the position of the vortex are almost identical in the two cases. In 
order to save computation time, we have decided to adopt the 21 x 51 grid mesh for com- 
putation. 

Before proceeding to discuss the calculated results, it is perhaps useful to give an indication 
about the level of velocities involved in the computation. Using the results shown in Figure 8(b) as 
an example, the fastest flow is 0.635 cm s-  ', which is located at the mid-height of the free surface 
and points vertically downwards. 

The values of the variables used in the calculations are listed in Table 11. These values are close 
to those cited for NaNO, by Schwabe et a1.' Since no distinctions between the thermal properties 
of solid and liquid were made in the data provided by Schwabe et al.,' the same thermal 
properties were used for both solid and liquid. I t  is, however, recognized that the mismatch in 
thermal properties (especially the thermal conductivity) can affect the melt/crystal interface shape. 
A significantly lower thermal conductivity (k) of 5.71 x lo4 ergcm-' "C-'S- '  and somewhat 
different p and d y / d T  were also cited by the same group of investigators elsewhere (see e.g. 
Reference 4). It should be pointed out that instead of using dy/aT= -0-07 dyncm-'  "C-' cited 
for NaNO, by Schwabe et al.,' we have chosen to use d y / d T =  -0.01 dyncm- "C-' in order to 

(a) (b) 

Figure 7. Part of a 41 x 71 grid mesh used for computation: (a) physical domain; (b) computatIona1 domain 



NATURAL CONVECTION IN A MELT COLUMN 71 

0 l - 1  
(a) Streamlines Isotherms 

Figure 8. Effect of the grid mesh on calculated results: (a) the 21 x 51 grid mesh shown in Figure 3; (b) the 41 x 71 grid 
mesh shown in Figure 7 

Table 11. Values of variables used for computation 

1.88 x 10' erg"C-'g-'  P 6.6 x "C- 
4600 erg cm- ' s  ay/aT -0.01 dyncm-'"C-' 

AH 1.85 x lo9 ergg-' P 2 . 8 2 ~  lo-* gcm- ' s - '  
k 2.86 x lo5 ergcm-' "C- ' s - '  pL 1.90 g ~ m - ~  

306.8 "C P S  t . g O g ~ m - ~  Tm 
R 0.3 cm 

I "C- ' 

t Reference 36 and 600 K. 
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avoid computing steady-state flow in an NaNO, melt where we have actually observed instability 
due to rather strong oscillatory (unsteady-state) thermocapillary flow. The purpose of the present 
study is not specifically for NaNO, and this is obvious since the values in Table I1 are varied in 
order to demonstrate the effects of certain dimensionless numbers. 

The effect of the Grashof number Gr is shown in Figure 9. From Figure 9(a) to 9(b) to 9(c), Gr 
increases from zero to 923 to 1845. The Marangoni number M a  and the Prandtl number Pr 
remain constant at - 167 and 1.86 respectively. The melt temperature at the melt/heater interface 
is Th = 330 "C. Since T, is chosen to be the melting point of NaNO,, i.e. 306.8 "C, the character- 

0 r* I (4 Streamlines Isotherms 

L*= 13.33 

Vmax= 6.85 18.10.3 
vm,= 2.675.10.2 

AV = 1:10-3 

AV= 3,9048'10-3 

0 r ' 1  (b) Streamlines Isotherms 

Figure 9. (a-b) 
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L*= 13.33 I 0 =  1.0 

, 
0 1- 1 (4 Streamlines Isotherms 

Figure 9. Effect of the Grashof number Gr: (a) Gr=O; (b) Gr=923; (c) Gr = 1845. Ma= - 167 and Pi-= 1.86 

istic temperature difference AT is 23.2"C. The zero value of Gr represents the case where the 
system is under microgravity (g = 0) or the thermal expansion coefficient of the melt is zero ( /3 = 0). 
As shown in Figure 9(a), thermocapillary flow prevails in the melt. The melt flows downwards 
along the free surface, i.e. from the hotter area to the cooler one, since Ma: (and dy/aT)  is 
negative. The return flow is upwards along the centreline. The maximum streamfunction is 
$*=3.81 x lo-' or $=9.75 x 10-3gs-'. 

The temperature field corresponding to Gr=O is also shown in Figure 9(a). The melt/solid 
interface is represented by the line of zero dimensionless temperature 8. Owing to the action of the 
thermocapiliary flow described above, the isotherms in the melt are pushed downwards near the 
free surface but upwards near the centreline. This results in three things. First, the melt/solid 
interface is distorted, i.e. convex toward the melt. Secondly, the axial temperature gradient along 
the melt/heater interface is steepened (i.e. becomes more positive), except in the small area near 
the free surface. Thirdly, the radial temperature gradient in the melt is increased (i.e. becomes 
more positive). 

Referring to Figure 9(b), as the Grashof number Gr is increased to 923, natural convection 
comes into play. This is due to the relatively high radial temperature gradients in the melt set up 
by the thermocapillary flow. However, the direction of this natural convection is opposite to that 
of the thermocapillary flow, i.e. upwards near the melt surface (where the melt is hotter) and 
downwards near the centreline (where the melt is cooler). Consequently, the strength of therrno- 
capillary flow is reduced, the maximum streamfunction being decreased to $*  =2.67 x or 
$=6.85 x gs- ' .  The melt/solid interface is less convex than that in Figure 9(a). Further- 
more, the melt column is considerably shorter than that in Figure 9(a). This is because the average 
axial temperature gradient along the melt/heater interface is no longer as steep as that in 
Figure 9(a). Consequently, the heat input from the heater to the melt is reduced. 

As the Grashof number is further increased to 1845, the strength of thermocapillary flow is 
further reduced by natural convection, as shown in Figure 9(c). The maximum streamfunction is 
$* =2.23 x gs-'. Consequently, the distortions in the isotherms in the 
melt and the melt/solid interface are further reduced and the melt column is further shortened. 

or $ = 5.70 x 
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The effect of the Marangoni number M u  is shown in Figure 10. From Figure 10(a) 
to 10(b) to IO(c), M a  changes from -167 to -83.5 to -16.7. The Grashof number Gr 
and the Prandtl number P r  remain constant at 1845 and 1.86 respectively. The melt temperature 
at the melt/heater interface is T,, = 330 "C, i.e. AT= 23.2 "C. As expected, as the absolute value of 
M u  decreases, the strength of thermocapillary flow in the melt decreases. The maximum 
streamfunction drops from $*=2.23 x lo-* or $=5.70 x gs- '  in Figure 10(a) 
to $*=2.12x or $=3.42x 10-3gs- '  in Figure 10(b). It drops further to $*=1.60x 
or $ = 8.81 x g s- in Figure IO(c). Furthermore, the distortions in the isotherms and the 

L*= 13.33 

vmm= 5.703*10-0 
ui*,,= 2.227.10-2 

r q =  1:10-3 

ayP= 3.0048.10-3 

(a) Streamlines Isotherms r* 

e =  1.0 L*= 13.33 / 

vm,= 3.42'10-3 

w" =2.12'10-2 max 

ay. 1.*10-3 

AV= 6.1988'10-3 Melt I=> 
I 

Solid 
0.0- 

-0.6 

-0.8 

r' 
(b) Streamlines Isotherms 

Figure 10. (a-b) 
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L*= 13.33 7 e =  1.0 

MFlt 
I 
I 0.0 

Solld 1 

-0.6 /_I 
I I I 

r* 1 
(c) Streamlines Isotherms 

Figure 10. Effect of the Marangoni number Ma: (a) M a  = - 167; (b) M a  = - 83.5; (c) Ma = - 16.7. Gr = 1845 and Pr = 1.86 

melt/solid interface are reduced and the melt column is shortened. The reasons for these are 
similar to those mentioned above in the discussion of Figure 9. 

The significant reduction in the strength of thermocapillary flow mentioned above is more 
adequately reflected by the changes in $ than I)*. For instance, Figure 10(a) to 1O(c), I) drops 
84.5% while $*  drops only 28.3%. This is because the characteristic velocity U ,  which is used to 
define $*, drops from 1.50 cm s- l  in Figure lO(a) to 094  cms-I in Figure lO(c). 

It should be mentioned that the characteristic velocity has also been defined as  follow^:'^^ 24,  26 

U' = I a y / a  TIA T 
P 

Based on this definition of the characteristic velocity, the values of the maximum dimensionless 
streamfunction $*  become 4.05 x for Figures 10(a), 10(b) and 
1O(c) respectively. This can be confusing since, going from Figure 10(a) to 10(b) to lO(c), the 
maximum I) * increases even though convection is reduced. 

It should also be mentioned that the following definition of the Marangoni number has often 
been used (see e.g. References 18 and 24): 

4.85 x l o p 3  and 6.25 x 

Pr. 
( d y / d  T ) A  T R Ma'= 

PI. V 2  

As can be seen, this definition of the Marangoni number includes the Prandtl number Pr. Since 
we prefer discussing the effect of surfce tension, i.e. (dy/aT)AT, separately from that of the thermal 
diffusivity c1, we have decided to choose a Marangoni number M a  which does not include the 
Prandtl number. 

The effect of the Prandtl number Pr is shown in Figure 11. From Figure 1 l(a) to 1 l(b) to 1 l(c), 
Pr decreases from 1.86 to 0.372 to 0.186. The Grashof number Gr and the Marangoni number M a  
remain constant at zero and - 167 respectively. In Figure l l(a) the melt temperature at the 
melt/heater interface is again Th = 330 "C, the characteristic temperature difference AT again 
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being 23.2 "C. The same values of Th and AT, however, cannot be used any longer in Figures 1 l(b) 
and 1 l(c), where Pr is reduced five and ten times respectively. This is because the height of the melt 
column is rather sensitive to variations in Pr.  When Pr is reduced significantly (ie. the thermal 
conductivity is increased significantly), the average axial temperature gradient in the melt is 
reduced significantly and the melt column becomes excessively long. In order to avoid un- 
realistically long melt columns, we have decided to reduce Th to 315°C (AT=8.2 "C) and 310°C 
(AT= 3.2 "C) in Figures 1 l(b) and 1 l(c) respectively. In order to keep the Marangoni number M a  
at the same level of - 167, dy/aT is changed from -0.01 dyncm-'"C-' in Figure ll(a) to 

0 1.* 
(a) Streamlines Isotherms 

L*= 13.33 

l+ = 1.54*10-2 

Iv",,= 6.013*10~2 
max 

A W =  1:10-3 

4v= 3.9048*10-3 

Solid 1 t - Y r - - -  

I-* 
(b) Streamlines Isotherms 

Figure 11. (a-b) 
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L*= 13.33 e =  1.0 

v,,= 1.4359.10" 

= 5.607'10-2 

AV= 1:10-3 
max 

A@= 3.9048.10-3 

I u.u Solid 

I -0.8 I 
r * 1  (4 Streamlines Isotherms 

Figure 11. Effect of the Prandtl number Pr: (a) Pr= 1.86; (b) Pr=0.372; (c) Pr=0,186.  Gr=O and M a =  - 167 

-0.0283 and -0.0725 dyncm-' "C-' in Figures 1 l(b) and 1 l(c) respectively. The maximum 
streamfunctions are $*=3.81 x lo-' or $=9.75 x l op3  gs- '  in Figure 1l(a), $*=6.01 x lo-' 
or $ = 1.54 x lo-' gs - '  in Figure l l(b) and $*=5.61 x lo-' or $=1.44 x lo-' gs- '  in 
Figure 1 l(c). The stronger thermocapillary flows in Figures 1 l(b) and 1 l(c) are mainly due to 
the more negative values of d y / d T .  Owing to the lower values of Pr in Figures 9(b) and 9(c), 
however, the isotherms in the melt and the melt/solid interface are less distorted. 

Finally, it is interesting to note that for most cases shown in Figures 9-11 the melt/solid 
interface is convex towards the melt. However, according to the approach based on conduction 
only, i.e. Figure 6, it is concave towards the melt. Therefore the conduction approach appears to 
be a poor approximation unless the Marangoni number M a  and the Prandtl number P r  are both 
very low. In actual crystal growth the shape of the melt/solid interface is an important factor 
affecting the quality of crystals. 

CONCLUSIONS 

1. A computer model has been developed for steady state, axisymmetrical thermocapillary flow 
and natural convection in a half-zone system with an unknown melt/solid interface. 

2. Natural convection can be induced by the radial temperature gradients produced by 
thermocapillary flow in the melt column. This natural convection, which is in the opposite 
direction to the thermocapillary flow, tends to reduce the strength of the latter, the 
distortion in the melt/solid interface and the height of the melt column. 

3. With the same melt temperature at the melt/heater interface, the higher the absolute value of 
the Marangoni number M a ,  the stronger is the thermocapillary flow, the more distorted the 
melt/solid interface and the longer the melt column. 

4. The height of the melt column is rather sensitive to variations in the Prandtl number Pr. 
With the same melt temperature at the melt/heater interface, the height of the melt column 
tends to increase significantly with decreasing Pr. 
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5. Conduction alone cannot properly describe heat transfer in the melt, especially the shape of 
the melt/solid interface, unless the Marangoni number M a  and the Prandtl number Pr  are 
both very small. 

ACKNOWLEDGEMENTS 

This research was supported by NASA under contract NAG8-705. We appreciate the critical 
comments of the reviewer. 

APPENDIX: NOMENCLATURE 

Bi 

9 
Gr 
h 

AH 
k 
L 
M a  

Pr  

R 
Re 
T 

CP 

h, 

n 

I 

T,  
Ti 
Tm 
AT 

U 

V 

U 

V 

Z 

Biot number 
specific heat 
gravitational acceleration 
Grashof number 
heat transfer coefficient 
height of melt/solid interface 
heat of fusion per unit solid mass 
thermal conductivity 
length of sample rod 
Marangoni number 
unit normal vector 
Prandtl number 
cylindrical co-ordinate 
radius of sample rod 
Reynolds number 
temperature 
ambient temperature 
melt temperature at melt/heater interface 
melting point 
characteristic temperature difference 
r-component of velocity 
characteristic velocity 
z-component of velocity 
velocity of sample rod 
cylindrical co-ordinate 

Greek symbols 

CI thermal diffusivity 
P thermal expansion coefficient 
Y surface tension 
fl curvilinear co-ordinate 
e dimensionless temperature 
0, dimensionless ambient temperature 
!J viscosity 
V kinematic viscosity 
4 curvilinear co-ordinate 
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P density * streamfunction 
0 vorticity 

79 

Superscripts 
* dimensionless quantity 

Subscripts 

L liquid or melt 
S solid 
W wall 

REFERENCES 

1 .  C. W. Lan, Y. J. Kim and S. Kou, ‘A half-zone study of Marangoni convection in floating-zone crystal growth under 

2. D. Schwabe, A. Scharmann, F. Preisser and R. Oeder, ‘Experiments on surface tension driven flow in floating zone 

3. D. Schwabe and A. Scharmann, ‘Some evidence for the existence and magnitude of a critical Marangoni number for 

4. F. Preisser, D. Schwabe and A. Scharmann, ‘Steady and oscillatory thermocapillary convection in liquid columns with 

5. C. H. Chun and W. Wuest, ‘A micro-gravity simulation of Marangoni convection’, Acta Astronaut., 5,681-686 (1978). 
6. C. H. Chun and W. Wuest, ‘Experiments on the transition from the steady to the oscillatory Marangoni-convection of 

7. C. H. Chun, ‘Marangoni convection in a floating zone under reduced gravity’, J .  Cryst. Growth, 48, 600-610 (1980). 
8. C. H. Chun, ‘Experiments on steady and oscillatory temperature distribution in a floating zone due to Marangoni 

9. C. H. Chun and W. Wuest, ‘Suppression of temperature oscillations of thermal Marangoni convection in a floating 

10. Y. Kamotani, S. Ostrach and M. Vargas, ‘Oscillatory thermocapillary convection in simulated floating-zone 

1 1 .  Y. Kamotani and J. Kim, ‘Effect of zone rotation and oscillatory thermocapillary flow in simulated floating zones’, 

12. S. Ostrach, Y. Kamotani and C. L. Lai, ‘Oscillatory therrnocapillary flows’, Physicochem. Hydrodyn., 6, 585-599 

13. G. H. Harriott and R. A. Brown, ‘Steady solute fields induced by differential rotation in a small floating zone’, J .  Cryst. 

14. J. Y. Murthy, ‘A numerical simulation of flow, heat and mass transfer in a floating zone at high rotational Reynolds 

15. J. Y. Murthy, ‘The influence of secondary convection on axial segregation in a floating zone’, Trans. ASME, 110, 

16. N. Kobayashi, ‘Computer simulation of the steady flow in a cylindrical floating zone under low gravity’, J .  Cryst. 

17. B. Fu and S. Ostrach, ‘Numerical solutions of thermocapillary flows in floating zones’, in Transport Phenomena in 

18. Y. Kamotani, S. Ostrach and M. Vargas, ‘Oscillatory thermocapillary convection in a simulated floating-zone 

19. M. K. Smith, ‘Thermocapillary and centrifugal-buoyancy-driven motion in a rapidly rotating liquid cylinder’, J .  Fluid 

20. P. A. Clark and W. R. Wilcox, ‘Influence of gravity on thermocapillary convection in floating zone melting of silicon’, 

21. C. Chang and W. R. Wilcox, ‘Inhomogeneities due to thermocapillary flow in floating zone melting’, J .  Cryst. Growth, 

22. C. Chang and W. R. Wilcox, ‘Analysis of surface tension driven flow in floating zone melting’, J .  Cryst. Growth, 19, 

23. N. Kobayashi and W. R. Wilcox, ‘Computational studies of convection due to rotation in a cylindrical floating zone’, 

microgravity’, J .  Cryst. Growth, in the press. 

melting’, J .  Cryst. Growth, 43, 305-312 (1978). 

the onset of oscillatory flow in crystal growth melts’, 1. Cryst. Growth, 46, 125-131 (1979). 

free cylindrical surface’, J .  Fluid Mech., 126, 545-567 (1983). 

a floating zone under reduced gravity effect’, Acta Astronaut., 6, 1073-1082 (1979). 

convection’, Acta Astronuat., 17, 479-488 (1980). 

zone by superimposing of rotating flows’, Acta Astronaut., 9, 225-230 (1982). 

configuration’, J .  Cryst. Growth, 66, 83-90 (1984). 

J .  Cryst. Growth, 87, 62-68 (1988). 

(1985). 

Growth, 69, 589-604 (1984). 

numbers’, J .  Cryst. Growth, 83, 23-34 (1987). 

662-669 (1988). 

Growth, 66, 63-72 (1984). 

Materials Processing, ASME, New York, NY, 1983, pp. 1-9. 

configuration’, J .  Cryst. Growth, 66, 83-90 (1984). 

Mech., 166, 245-264 (1986). 

J .  Cryst. Growth, 50, 461 -469 (1980). 

28, 8-12 (1975). 

355-366 (1976). 

J .  Crysr. Growth, 59, 616-624 (1982). 



80 C. W. LAN AND S. KOU 

24. A. Rybicki and J. M. Floryan, ‘Thermocapillary effects in liquid bridges. I. Thermocapillary convection’, Phys. Fluids, 

25. R. Natarajan, ‘Thermocapillary flows in a rotating float zone under microgravity’, AIChE J . ,  35, 614-624 (1989). 
26. L. G. Napolitano, C. Golia and A. Viviani, ‘Effects of variable transport properties on thermal Marangoni flows’, Acta 

27. L. G. Napolitano, C. Golia and A. Viviani, ‘Numerical solutions of unsteady thermal Marangoni flows’, in Proc. 5th 

28. J. J. Derby, ‘Theoretical modeling of Czochralski crystal growth’, MRS Bull., 29-35 (October 1988). 
29. R. Brown, ‘Theory of transport processes in single crystal growth from the melt’, AIChE J., 34, 881-910 (1988). 
30. S. Ostrach, ‘Conuection due to surface-tension gradients’, in M. J. Rycroft (ed.), Proc. COSPAR Space Research, 

Vol. 19, Pergamon, Oxford, 1979, p. 563. 
31. Z. Kozhoukharova and S. Slavchev, ‘Computer simulation of the thermocapillary convection in a non-cylindricai 

floating zone’, J. Cryst. Growth, 74, 236-246 (1986). 
32. A. D. Gosman, W. M. Pan, A. K. Runchal, D. B. Spalding and M. Wolfshtein, Heat and Mass Transfer in Recirculating 

Flows, Academic Press, London, 1969, pp. 18-115. 
33. J. F. Thompson, F. C. Thames and C. W. Mastin, ‘Boundary-fitted curvilinear coordinate systems for solution of 

partial differential equations on fields containing any number of arbitrary 2-dimensional bodies’, NASA Report 

34. C. J. Chang and R. A. Brown, ‘Natural convection in steady solidification: finite element analysis of a two-phase 

35. P. A. Sackinger and R. A. Brown, ‘A finite element method for analysis of fluid flow, heat transfer and free interfaces in 

36. G. D. Raithby and G. E. Schneider, ‘Numerical solutions of problems in incompressible fluid flow: treatment of the 

37. J. Crank, Free and Mooing Boundary Problems, Oxford University Press, London, 1984, pp. 199-216. 
38. H. S. Carslaw and J. C. Jaeger, Conduction ofHeat in Solids, 2nd edn, Oxford University Press, London, 1959, p. 219. 
39. L. C. Burmeister, Convective Heat Transfer, Wiley, New York, 1983, p. 583. 

30, 1956-1972 (1987). 

Astronaut., 13, 661-667 (1986). 

Eur. Symp. on Materials Science under Micrograoity, Schloss Elmau, F.R.G., 1984, p. 251-258. 

NASA-CR-2729, July 1977. 

Rayleigh-Benard problem’, J. Comput. Phys., 53, 1-27 (1984). 

Czochralski crystal growth’, Int. j. numer. methodsyuids, 9, 453-492 (1989). 

velocity-pressure coupling’, Numer. Heat Transfer, 2, 41 7-440 (1979). 


